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Hybrid systems



Hybrid systems—Finite automata
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Our original contributions

Computation of bifurcation sets in hybrid systems

• T. Kousaka, T. Ueta, and H. Kawakami, “ Bifurcation
of switched nonlinear dynamical systems,” IEEE
Trans. CAS-II, 46, no. 7, pp. 878–885, 1999.

• ...
• Y. Miino, D. Ito, and T. Ueta, “A computation method
for non-autonomous systems with discontinuous
characteristics,” Chaos, Solitons & Fractals, 77, 8, pp.
277–285, 2015.
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Problem description

Given the hybrid system:

dx
dt = f(x)

where, f contains several different dynamical systems
aligned by a threshold xth ∈ R
Assume that a solution is written by:

x(t) = φ(t, x0), x(0) = φ(0, x0) = x0.
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Our speciality

dx
dt =


f0(x) if x ∈ R1 ⇔ φ0

f1(x) if x ∈ R2 ⇔ φ1
...
fm−1(x) if x ∈ Rm−1 ⇔ φm−1

where Ri is a region of i.

We can evaluate ∂φj
∂xthj

even though xthj are
implicit parameters!
D. Ito, T. Ueta, and K. Aihara: IEICE Trans. Fundum. JA-94,
No. 8, 2011. (Japanese)
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Perturbations
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Poincaré mapping and its fixed point

The fixed point of the Poincaré map: T(x):

T(x0) − x0 = 0 (1)

The characteristic equation:

χ(µ) = det(DT(x0) − µI) = 0
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Controlling chaos for hybrid sys-
tems



Controlling chaos by a threshold

D. Ito, et al. Int. J. Bifur. Chaos, 24, 10, 2014.
Threshold controller
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Controlling chaos by a threshold

D. Ito, et al. Int. J. Bifur. Chaos, 24, 10, 2014.
• Controller perturbes the threshold value
• The threshold value converges when completed
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In this talk, we propose...



Stability design

Solve a threshold value of the limit cycle whose
multiplier satisfies the specific stability.
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(hybrid system)
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Open-loop control; an example
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Example: van der Pol oscillator with a threshold

Switched van der Pol oscillator:
dx
dt =

{
f0(x, ϵ,ω) if q(x) ⩽ 0
f1(x, ϵ,ω) otherwise, (2)

where,

f0 =
(
y
ϵ0(1− x2)y−ωx

)
, f1 =

(
y
ϵ1(1− x2)y−ωx

)
.

xth ∈ R is a threshold value, q(x) = x− xth ∈ R.
A solution:

xi(t) = φi(t, xi0), xi(0) = xi0. (3)
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Limit cycles of hybrid dynamical systems

Poincaré section

The threshold value may change the stability of the
cycle.
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Sample phase portrait

ϵ0 = 0.2, ϵ1 = 0.1, and xth = 0.1.
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Bifurcation diagram
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Derivative of T

The derivative with the initial value of the Poincaré map:

∂T
∂x0

=

m∏
i=0

∂T1−i
∂x1−i

∣∣∣∣∣
t=τ1−i

. (4)

Each Jacobian matrix is given by:

∂Ti
∂xi

=

In − 1
∂q
∂x · fi

fi
∂q
∂x

 ∂φi
∂xi

(5)
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hoge

Π0 =

{
(x, y) | q(x) = 0, dxdt > 0

}
,

Π1 =

{
(x, y) | q(x) = 0, dxdt < 0

}
.

(6)

The local map is written by

T0 : Π0 → Π1; x0 7→ x1 = φ0(τ0, x0),
T1 : Π1 → Π0; x1 7→ φ1(τ1, x1).

(7)

The Poincaré map:

T(x0) = T1 ◦ T0(x0). (8)
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Local coodinate

The local coordinate: u ∈ Σ0 ⊂ R
A projection p and an embedding map p−1:

p−1 : Σ0 → Π0, p : Π0 → Σ0. (9)

The Poincaré mapping on the local coordinate:

Tℓ : Σ0 → Σ0; u 7→ p ◦ T ◦ p−1(u). (10)

The fixed point of the Poincaré mapping u∗

Tℓ(u0) − u0 = 0. (11)
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Jacobian matrix

The Jacobian matrix is given by

∂Tℓ
∂u0

= DTℓ(u0) =
∂p
∂x

∂T
∂x0

∂p−1

∂u . (12)

The characteristic equation for the fixed point is given
by

χℓ(µ) = det (DTℓ − µ∗I) = 0, (13)

where µ∗ is specified multiplier. We can obtain a
parameter xth with the specified µ∗ by solving Eq. (11)
and (13).
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Computation of the fixed point

The derivative with xth is required in Newton’s method
and is obtained from the previous study as follows:

∂Tℓ
∂xth

=
∂p
∂x

∂T
∂xth

. (14)

Now we are ready to solve them for u0 and xth.
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Control procedure

1. Give the desired multiplier
2. Compute the threshold value satisfying the
multiplier

3. Change the threshold value
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Isocline, ϵ0 = 0.2
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Isocline, ϵ0 = 0.2
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At point A, µ = 0.4
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Features and advantages

• Change of the threshold value: an implicit
parameter
• No control energy is consumed
• No explicit parameter is changed — system
unchanged

• Transition: almost original system behavior

• Non-dynamical controller is realized
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Concluding Remarks

• Stability with the threshold value for the given
hybrid systems are computable

• A limit cycle holding a desirable stability is
controlled by the threshold value

• The control scheme is easy: just change a threshold
value stepwisely

• NO TRANSITION, No affection to the state variables,
basically.
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